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Solid angles 5. 
Chiral molecules and the case of face selectivity 
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In this paper we present the analytical algorithm to calculate the solid angle of a collection 
of spheres in a hemisphere and quadrant. The methodology is a reliable and useful measure of 
partial steric congestion and can readily be applied to chiral and pro-chiral molecules. This 
algorithm lays the foundation for the application of a steric measure to the prediction of dia- 
stereomeric and enantiomeric excess. 

1. Introduct ion  

Theoretical  models of  chiral effects have been focused on two different areas: 
pure geometrical  models of  chiral objects [1] and molecular  mechanics models  of  
diastereoselectivity [2]. To our knowledge, there have been no mathematical  mod-  
els o f  chirality which can easily be applied to chemical systems [3]. Model ing of  
steric effects in chiral molecules poses an interesting challenge. By definition chiral 
isomers only differ in the spatial arrangement of  their a toms so that  conventional  
geometr ic  measures of  substituent size such as the cone [4] or solid angle [5] cannot  
be used to distinguish between enantiomers. F rom some common apex, bo th  the 
linear and solid angles for each enantiomer will be identical. Prochiral  molecules 
which contain non-equivalent  faces are amenable to t reatment  by quanti tat ive geo- 
metric steric measurements .  Consider at tack by a nucleophile at the carbonyl  car- 
bon  of  a chiral ketone. It is postulated [6] that the different stereoisomers arise 
because the path of  the nucleophile is sterically hindered to a different degree on the 
si- and re-faces of  the carbonyl.  Conventional  measures of  steric size such as the 
Taf t  steric parameter  [7] or cone angle [4] cannot  easily be used to quantify this dif- 
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ference. However, the additivity of solid angles enables the theoretical treatment 
of  such a problem. 

The solid angle of an element of  area, ds, subtended at a point, O, is 

r.ds 
d ~ - -  r3 , (1) 

where r is the vector from 0 to da and r is its magnitude. It follows that the solid 
angle subtended by a surface, S, at 0 is 

L r-ds 
3Q = r3 (2) 

The integrand takes into account the three relevant factors: the size of  the element 
of  surface, its inclination to the line joining the element to O and the distance from 
O [8]. In terms of spherical polar co-ordinates, (2) becomes 

r°:<o' /? 
Y2 = , d~ jo,(~ ) sinOdO = , [cos(01(qS)) - cos(02(OS))ld~ (3) 

in the general case for which the limits of  the polar angle, 0, are functions of  the azi- 
muthal  angle, 4~. Solid angles are measured in steradians (sr). The solid angle can 
be thought  of  as the surface area, in steradians, occupied by the projection of  the 
solid body on the inside of  a unit sphere. If the solid body covers the entire unit 
sphere, then the solid angle of  the body is 47r sr. If the solid angle is taken to be that 
of  a cone, the vertex angle (commonly called the linear or cone angle) of  the cone 
can be calculated [9]. It is important  to note that solid angles are additive whereas 
cone angles are not additive. 

To model the difference in steric demand on either side of a chiral plane, we 
need to define a steric measure to quantify the amount  of occupied space on either 
side of the plane. If the reaction is under steric control, the side of the substrate 
with least steric congestion (i.e. the greatest amount  of  available space) is the pre- 
ferred side of attack. To calculate the amount  of occupied space relative to each 
molecular face, a plane is placed through the molecule and the solid angle on either 
side of  this plane is calculated. The aim of  this paper is to present an algorithm for 
the calculation of solid angles on opposite sides of a plane. 

2. App l i ca t ion  o f  solid angles to chirality 

Consider the example of nucleophilic attack on a carbonyl group as illustrated 
in fig. 1. The Newman projections show the two different at tack paths for the 
nucleophile in fig. 2. It is thought  that the amount  of  steric congestion on either 
side of the plane defined by the sp a carbon a tom determines which face the nucleo- 
phile attacks preferentially [6]. However, the solid angles of  the portions of  the 
molecule on either side of  the plane of the sp 2 carbon a tom are identical. If  a second 
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Fig. 1. Illustration of the nucleophilic attack on a carbonyl. The positions marked s, m and I refer to 
small, medium and large sized substituents, respectively. Note that the nucleophile can attack from 

either side of the chiral plane defined by the sp 2 carbon atom. 

plane perpendicular  to the first is added,  then the solid angles of  the por t ions  o f  
the molecule  in the two quadrants  (one for each diastereomer)  in which a t tack 
occurs are different. Accepting the steric a rgument  above [6], the a m o u n t  of  avail- 
able space in the two quadrants  of  interest determines the rate of  a t tack of  the 
nucleophile  at the carbon center. The rate of  a t tack of  the nucleophile,  in turn,  
determines  the diastereomeric excess of  the products .  The a m o u n t  o f  space avail- 
able can be deduced f rom the total  solid angle in the required quadrant .  

Let us first consider the simple system A O B  (fig. 3), i.e. the case of  two spheres, 
A and B, of  different sizes (let rA < rB) placed at different distances f rom a c o m m o n  
poiiat, O, and  suppose O A  > O B .  (These are for convenience of  the d iagram and 
have no specific implicat ions for the discussion.) A plane is placed th rough  the two 
spheres A and B so that  it contains the c o m m o n  point  O and does not  coincide 
with an axis of  symmetry  (fig. 3). Since there is no symmet ry  about  the plane (as 
shown in fig. 3), the total solid angles of  the spheres f rom the perspective of  O on 
either side of  the plane will be different. When  a solid angle of  a molecule is calcu- 
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Fig. 2. Newman projections of two favored attack modes of the reaction illustrated in fig. 1. 
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Fig. 3. Diagram of an arbitrary plane, lr, passing through any part of a system where two spheres 
are attached to a common point. 

lated, the molecule is projected onto the inside of  a unit sphere and the m a x i m u m  
possible solid angle is 47r sr. When the solid angle on a single side of  a plane is calcu- 
lated, a port ion of  the molecule is projected onto the inside o f  a unit hemisphere 
and the maximum solid angle is 27r sr. Let X be the solid angle of  residual space (i.e. 
X = 47r - $2 or 27r - $2; S2 = solid angle of  the molecule or port ion of  molecule). 
The solid angle of  residual space, X, depends on the size of  the sphere(s) in the hemi- 
sphere of  interest. We now have a measure of  both occupied (Y2) and unoccupied 
(X) space in the molecule. Therefore we can differentiate between the two different 
hemispheres by means of  Y2 or X- This approach is general for any geometrical  
ar rangement  of  any number  of  spheres. Note  that  for the special case of  
A O B  = 180 °, with the plane placed in such a way as to contain the A O B  plane, or 
any axis of  symmetry,  the space occupied on either side of  the plane will be identi- 
cal. This case need not be considered further since it provides no informat ion about  
diastereofacial selectivity. In general the location of  the plane is not  important ,  
but it should be generated in such a way that  it does not  contain any axis of  symme- 
try of  the molecule. 

A second plane, perpendicular to the first one, can be defined (fig. 4). This 
divides the unit sphere into quadrants.  The max imum solid angle in each quadran t  
is 7r sr and so a value of  X for the quadrant  can also be determined. Once again the 
value o f x  depends on the sizes and positions of  the spheres in the quadrant .  As with 

\ 
\ 

\ 
\ 

\ 
Fig. 4. Placement of a second plane, 7r, in a similar arrangement to the one illustrated in fig. 3. 
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the hemisphere approach this can also be generalized to any geometrical arrange- 
ment  of  any number  of  spheres. 

The algorithm for calculating the total solid angle in a hemisphere or quadrant  
is presented below. Four  cases are considered: (i) the plane cuts no atoms, (ii) the 
plane cuts a single sphere, (iii) the plane cuts two atoms which are not  intersecting 
and (iv) the plane cuts two atoms which are intersecting. When the plane cuts no 
atom, the general solid angle algorithm [5] is applied to the atoms on the side of  the 
plane of  interest without modification. When the solid angle, $2, is computed,  the 
residual solid angle, X, is given by 27r - ~2. As always in this paper the side of interest 
is that  side of  the plane for which the solid angle is sought just as the point of interest 
is that  point  (often termed the point of observation) from which the solid angle is 
measured. 

3. Sol id angles o n  o n e  s ide  o f  a p l a n e  

The original version of  the general solid angle algorithm [5] needs to be modified 
in order to take into account a plane passing through the molecule and containing 
the point  of  interest. We assume that there is a plane through the molecule and there 
is interest in the steric effect of one side of  the plane at a time. In the case of a single 
a tom (sphere) we have the situation illustrated in fig. 5. 

Fig. 5. A section of the system: sphere S and plane 7r by the plane perpendicular to 7r passing through 
the center C of the sphere S. 
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For  the t ime being we select axes such that  the x axis lies in the plane. The  region 
of  interest, i.e. for which f2 and X are to be calculated, is taken to be above the plane 
(fig. 6). 

The equat ion  of  the plane passing th rough  the molecule and containing the point  
of  observat ion,  O, is 

ox + my + nz = 0,  (4) 

where 

/~ = (o, m, n) T (5) 

is the normal  to the plane in the direction of  the area of  interest. At  a distance d 
below the xy plane where z = - d ,  since x = 0, the y ordinate  in the plane is 

y = nd/m. (6) 

The solid angle subtended by S M R N  is 

f 2 = ~ d C d O  sin 0 

'HOS[coSOoM COS 06U] de, (7) 
d HGR 

where 

OG OG 
cOSOGM- O M -  ( 0 6 2  Af_ GM2)l/2 (8) 

N 

X 
F 

Fig. 6. Stereographic projection of the sphere and intersecting plane onto the plane normal to the 
axis OG at G. 
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and 0ON is simply the semi-vertex angle, a,  of  the enveloping cone in fig. 5. Since 
y = x tan  ¢, at M ,  

GM2] -1/2 
COS0GM= 1+ OG 2 J 

[1 x 2 +y2] -1 /2  
- - + 

m sin ¢ 

= [m 2 sin2 ¢ + n211/2 • (9) 

Hence 

f H a S l m s i n ¢  } 
= - c o s a  d¢  if2 dHGR [ (1  -- m2COS2¢) 1/2 

[arccos(m cos ¢) Has = - ¢ cos a]HGR. (10) 

The  values of  the angles are given by the points  of  intersection of  the line SR 
with the circle 

x 2 + y 2  = d 2 tan  2 a ,  (11)  

which with x tan ¢ = y a n d y  = (nd/m) gives 

m2n 2 sin 2 a 
cos 2 ¢ - m2 (12) 

so tha t  

~) = arccos [--(m 2 -- n2sin2a)  1/2] - -arccos  [(m 2 -- n2 sin2 c~)1/21 

-cosa(arccosI-~ml(m2-nasinZa)l/21} 

--coso~(arccoSI~ml(m2--n2sin2o~)l/2]}, (13) 

in which care mus t  be taken in evaluating the inverse cosine to ensure that  the cor- 
rect branch is taken. This is de termined by the sign ofn/m. 

When  two a toms  are to be considered, the choice mus t  be made  as to what  deter- 
mines  the coordinate  axes, the line between the centers of  the two a toms  or the 
or ienta t ion of  the plane. We choose the former  since all of  the algebra has been 
done  [5]. The  plane is still taken to pass th rough  the origin, but  now has equat ion  

lx + my + nz = 0,  (14) 

where 
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p = ( l , m , n )  T (15) 

is in the direction of interest. The projected ellipses have equations 

(left) ( x + c )  2 + ~ = 1  
a 2 __  

( x  - c ' )  2 
(right) d2 F ~ = 1 (17) 

as shown previously [5]. The equation of the line is 

lx + my = nd.  (18) 

We assume that the line intersects both ellipses twice (figs. 7 and 8). For the sake 
of convenience we treat the cases in which the line passes above or below the origin 
separately and adopt the convention that the area of interest is above the line. 

In fig. 7, T represents a typical point traversing the boundary of the region. In 
fig. 8 the points U and V represent the two typical points traversing the boundary 
of the region of interest. 

Figure 7 case: The minimum value of 0 is zero and so 

/ i  o- f2 = &b sin 0 dO 

/- 
= (1 - cos0a) dq~, (19) 

where 0B(~b) is the angle on the boundary. The limits for ~b will be specified below. 
The boundary is traversed in three sections since z = - d .  The first is from S to P on 
the right ellipse, the second is from P to N on the left ellipse and the third contained 
in the plane is from N to S along the straight line. 

As usual 

OG 
COS0B = ( O G 2  -4- G T 2 )  1/2 " ( 2 0 )  

Q 

p. T 

F 

Fig. 7. S tandard  setup for two ellipses and a line passing below the origin in the plane, G. 
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F ~ "  x 

Fig. 8. Standard setup for two ellipses and a line passing above the origin in the plane, G. 

107 

Since y = x t an  ~b, eq. (20) gives 

n d  
X-- 

1 + mtanq~ 

so t h a t  

G T  2 = 

a n d  

COS 0B : 

n2d 2 

(l cos ~b + m sin ~b) 2 

n2 2] 1/2 

1 4 ( l c o s ~ b + m s i n q ~ )  

(21) 

(22) 

l cos ~b + m sin ~b 

[1 - (l sin q~ - m cos ~b)2] 1/2 " 
(23) 

T h e  in tegra l  can  be eva lua t ed  as 

cos  0B &b = arcs in( l  sin ~b - ~b). m c o s  

H e n c e  (19) b e c o m e s  

(24) 

-- -UZ - /S  2~ (1 + ~=+)-v2 d~ (1 + ~=+)-~/2 d~ 

- {arcs in( l  sin H G S  - m cos H G S )  - arcs in( l  sin H G N  - m cos H G N )  } ,  

(25) 

where  7/and ( are 
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[~..~ 1/2 

c o s  2 ¢ + _ cos0  O_ ) cos  +sin20 l 
k a2 b2 JJ 

, ( 2 6 )  
~7±= cos2¢ sin 2¢ 

4 a 2 b 2 

c' dI~4 ( c s 2 )  {cos2 ~b sin2 ~)  ] 1/2 
a~C°Sq~± c° s2¢+  1-a52 k ar~ + ~ J J  

¢±=  c o s ~  ~ (27) 

a~Z + b~Z 

as defined previously [5]. 
F i g u r e  8 case." T h e  minimum value of 0 is now that given by the line and we 

denote it by 0t and reserve 0B for the curved parts of the boundary. The solid angle is 
givenby 

f - ( c o s  0z - Y2 = cos 0B) de (28) 

and can be written down in terms of what has been defined above. 

Y2 = arcsin(l sin H G N  - m cos H G N )  - arcsin(l sin H G S  - m cos H G S )  

/ Z  (1 + ¢2+)-1/2 a~ (1 + 7/2) -'/2 de (29) 

There are some variations to the results in (25) and (29). Consider the case of 
fig. 9 which is that of fig. 7 except that the positions of M and R are reversed. 

Now there is a (small) region U M R  which must be excluded. Evidently, 

Q 
T 

P 

x 
F 

Q' 

Fig. 9. The line NRMScu t s  both ellipses twice, but is not within the two ellipses over the line segment 
RM. NS does not have to be parallel to FH. 
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f H G P  I H G N  ~'12 "1-1/2 d~ f2 = 27 r -  (1 + ¢2+)-W2 dq~-  (1 + .,+, 
J HGS d HGP 

- {arcsin(l sin H G R  - m cos H G R )  - arcsin(l sin H G N  - m cos H G N )  } 

-I27 -/,,;7 (1 + 172+) -1t2 dq~ (1 + (2)- , /2  dq5 

- {arcsin(l sin H G S  - m cos H G S )  

- arcsin(l sin H G M  - m cos H G M ) } .  (30) 

The  case corresponding to fig. 8 is i l lustrated in fig. 10, the solid angle is given by 

S2 -- {arcsin(l sin H G M  - m cos H G M )  - arcsin(l sin H G S  - m cos H G S )  } 

+ {arcsin(l sin H G N  - m cos H G N )  - arcsin(/s in H G R  - m cos H G R ) }  

[ H a M  fHON 
(1 + - aMOS d$a1~Ol  ~ (1 + 772) -1/2 d e .  (31) 

4. So l id  ang les  in a q u a d r a n t  

We assume that  the global coordinate  system has been chosen so that  the region 
of  interest is specified by the planes X --- 0 and Y --- 0 (fig. 11). The equat ions  of  
these planes are required in terms of  the local coordinates  (x, y, z) in which the point  
G is given by (0, 0, - d ) .  Since the plane normal  to O G  is not,  in general, parallel to 
one of  the coordinate  planes in the (X, Y, Z) frame, the projections of  the two 
planes, X = 0 and Y = 0, on this plane will not  be at right angles. 

The  first task is to rotate the global axes to align them with the local axes at O. 
The  point  G is on the axis of  the enveloping cone for the a tom,  or pair  of  atoms,  

N Q 

Fig. 10. The line N S  cuts both ellipses twice, but it is not within the two ellipses over the line 
segment R M .  
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Y 

oz:  

Fig. 11. Global and local coordinate frames. 

under  cons idera t ion  and  is located at  a dis tance d f rom O as has  been the case 
previously.  

In global  coord ina tes  G is the point  (Xa, Ira, Za). R o t a t e  a b o u t  OZ so t ha t  the 
new coord ina tes  x' a = 0. In general,  

so tha t  

x' c = 0 = X ~ c o s #  - Yc s i n # ,  

(32) 

(33) 

y~ = 0 = Xo sin # + Yc cos # ,  (34) 

~G = ZG.  

F r o m  (33) the angle/z is de te rmined  and  then  (34) gives the value o fy~ .  
N o w  ro ta te  abou t  Ox' unti l  y'~ = 0 and  z/~ = - d .  

(y) /(zy) x 1 0 0 x 

= cos u - sin u 

sin u cos u / 

so t h a t  

(35) 

(36) 

(37) 

y~ = 0 = y~ cos u - z~ sin u ,  (38) 
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z~ = - d  = y~ sin g + i c  cos v. (39) 

The combinat ion of  (35) and (36) gives v in the correct quadrant .  
This is sufficient if one is looking at a single a tom (sphere). However ,  if  one is 

considering a pair o f  a toms (spheres) it is necessary to make a further rotation,  this 
time abou t  z" so that  the new x axis is along the axis o f  symmetry  of  the two pro- 
jected ellipses. We now have 

sin  ill:/ = si A cos A y" 

0 f '  

(40) 

and the overall t ransformation is 

(i) (c°i  i)(i0 0 /(coi. si . !)(i) = si A cosA c o s y  - s i n v  si # c o s #  . 

0 sin v cos v / 0 

(41) 

When  the two spheres are projected onto the base of  a cone as in [5], the centers o f  
the two spheres, C and D, lie on a line, FGH, which is to be the new x axis. Hence  
the y coordinates  of  (Xc, Yc, Zc) and (XD, Yz~, ZD) are to be zero. Both points  are 
known from the molecular  geometry  and so there are two equations 

0 = (Xc cos/z - Yc sin v) sin A 

+ (Xc sin # cos v + Yc cos # cos v - Zc sin g) cos A, (42) 

0 = (Xn cos # - YD sin v) sin A 

+ (Xo sin # cos v + Yn cos # cos v - ZD sin v) cos A, 

which specify A right down to the correct quadrant .  
The inverse t ransformat ion is 

(43) 

(/( °1/(°0 /( 0)(x) X cos # - sin # 0 1 0 0 cos A sin A 

= 0 y Y - s i n #  c o s #  c o s y  s inv - s i n A  cosA 

Z 0 0 - s i n v  c o s y /  0 0 1 z 

(44) 

and this gives the relationship between the global coordinates and the local coordi-  
nates. The planes X = 0 and Y = 0 are described by the equations 

x(cos # cos A - sin # cos v sin A) 

+ y(cos  # sin A - sin/z cos v cos A) + z sin # sin v = 0 (45) 
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and 

- x(sin # cos A + sin # cos u sin A) 

+ y ( -  sin # sin A + cos # cos u cos A) + z sin # sin u = O, (46) 

respectively, and the two lines in the plane at G normal  to OG are 

lx + my = nd (47) 

and 

l' x + m' y = n' d , (48) 

where the direction cosines (l, m, n) and (l ~, m', n') are given in terms of# ,  u and  A. 
Note  that  ((l,  m, n), (l', m', n ' ) )  = 0 which is to be expected. However ,  ((l,  m), 

(l', m ' ) ) ¢  0 in general, i.e. the two lines in the plane are not  mutua l ly  
perpendicular .  

In fig. 12 one possible set-up is illustrated. No te  that  the lines M N  and P Q  are 
genetically not  at right angles. It is assumed that  bo th  lines have been shown to 
intersect both  ellipses twice. I f  this is not  the case, the problem is one of  the type dis- 
cussed above. It  is assumed that  the region of  interest is the right quadran t  and  
the solid angle sought  is that  subtended by SAHB.  Let G T  be a ray f rom G which 
intersects the bounda ry  of  the region at U and V. If  we denote  the polar  angle along 
M N  as OMN, along P Q  a s  OpQ, on the t ight ellipse as OR and on the left ellipse as 

OL, 

HGA [ HGB 
f2 : f / (COS OpQ -- COS OMN) d~ + ( cos  OpQ - c o s  OR) dq5 , (49) 

J HGS J HGA 

where 

cos 0XtU = lcos~b + msin~b (50) 
[1  - (l' sin ~b - m' cos ~b)2] 1/2 

Q 

F ~ N  x 

p /  • x=0 

Fig. 12. The projections of X = 0 and Y = 0 onto the plane through G normal to OG. 
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l' cos ¢ + m' sin ¢ 
cos OpQ - [1 - (l' sin ¢ - rn' cos ¢)2]1/2 (51) 

(following (23)) and 

cos OR = [1 + (2]-1/2 (52) 

(following from [5]). 
Other  possible line configurations are evident from the other three quadrants  

and the formulae can easily be written down. 

5. Conclusion 

The analytical algorithm for the calculation of  the solid angle of  a por t ion of  a 
molecule in a hemisphere or a quadrant  is presented. In our discussion we have not  
given every possibility as this would have added unnecessary length to the paper. 
We simply highlight the types of  mathematical  problems the computer  code would  
have to address. We note that  similar calculations could be made for octants, but  
they do not  have immediate chemical application. 
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